Daging Merah dan Asam Amino Esensial


Daging merah mengandung protein yang cukup dan kompit dengan semua asam amino esensial yang mudah dicerna.

Asam amino esensial ada 9 yang tidak bisa dibuat di dalam tubuh harus didapatkan dari makanan, dan total ada 22 jenis asam amino yang dibutuhkan untuk membangun banyak bagian badan seperti otot, sel darah merah, sistem imun, saraf, organ-organ, dan segalanya yang dari protein di dalam tubuh kita.

Asam amino bisa didapatkan juga dari protein nabati tapi hanya sumber protein hewani yang lengkap ada semua sembilan asam amino esensial dan lebih mudah dicerna manusia dengan beragam enzim pencernaan yang ada.

Kualitas nutrisi protein di dalam daging merah lebih superior daripada protein lainnya apalagi dibandingkan dengan protein dari nabati yang tidak lengkap.

Kita bahas fungsinya asam amino penting ini satu-satu secara singkat:

Histidine penting untuk pertumbuhan sel-sel, khususnya untuk anak-anak dan untuk reparasi atau regenerasi sel-sel rusak pada dewasa.

Lanjut, isoleucine bersama dua asam amino lain (leucine dan valine) menguatkan otot dan membentuk hemoglobin juga penting untuk kadar glukosa darah serta metabolisme, juga penting dalam faktor pembekuan darah kalau kurang bisa rawan sakit jantung.

Next yang esensial adalah asam amino: leucine dibutuhkan untuk menstimulasi rilis insulin dari pankreas, melindungi otot dan meningkatkan produksi energi, menguatkan penyembuhan dan perbaikan kulit.

Bayangkan, baru tiga aja yang penting udah harus tidak boleh kekurangan, defisiensi tiga asam amino ini aja yang bikin kulit bermasalah, gula darah fluktuatif, metabolisme terganggu dan rasa kurang bertenaga serta sakit.

Lysine juga sangat penting untuk melawan infeksi, lalu methionine membantu fungsi biokimia dalam memecah lemak dan sebagai sumber sulfur untuk detoksifikasi cemaran logam berat kayak timbal dan merkuri.

Phenylalanine dibutuhkan untuk pembentukan protein dan kesehatan saraf serta otak juga beragam hormon lain termasuk tiroid juga penting untuk pembentukan adrenalin.

Threonine sangat dibutuhkan dalam pembentukan kolagen dan leastin pada kulit (ibu-ibu dan wanita mudah yang ingin kulitnya terus muda butuh ini)

Valine memicu kekuatan jaringan badan termasuk otot serta organ-organ, juga menjaga keseimbangan nitrogen di dalam tubuh.

Dan TRYTHOPHAN, yang sering saya sebut-sebut adalah asam amino penting untuk memproduksi niacin dan membuat serotonin sebagai pengatur mood supaya stabil dan terhindar dari depresi!

Trytophan ini amat sangat penting untuk fungsi berpikir pada otak dan saraf, menjaga emosi serta pereda nyeri atau sakit akibat inflamasi, peradangan di sistem ceran termasuk membuat tidur menjadi berkualitas.

Jika sehari aja kurang trytophan maka kadar serotonin menurun, bikin bete dan kurang tidur, daya ingat melemah alias gampang lupa dan malah mudah marah atau tersinggung. Lama-lama jadi depresi berat!

Bayangkan kalau diet berlebihan, kurang makan daging atau puasa kelamaan setiap hari, bakal malnutrisi serta mengacaukan kesehatan badan dan pikiran, bahkan ketidak cukupan salah satu aja dari sembilan asam amino yang esensial ini membuat kacau metabolisme dan mood, merugikan kesehatan dalam jangka panjang, dan kesembilan asam amino esensial ini hanya bisa dipenuhi dari makan, harus makanan, tubuh tidak bisa membuat sendiri.

Sumber utama asam amino esensial yang harus dimakan kalau tidak makan tidak akan bisa didapatkan makanya namanya esensial, dari 22 asam amino hanya 13 yang bisa disintesis di dalam tubuh sendiri tapi sisanya 9 tidak bisa tidak harus makan:

Histide: paling tinggi di daging merah, game meat, juga babi ada serta ikan seperti tuna, plus di ayam juga ada.

isoleucine: ada di putih telur dan ayamnya, juga kambing atau domba plus sapi, dan kepiting serta beberapa jenis ikan.

Leucine: juga di putih telur dan ayamnya, serta tuna dan daging merah.

Lysine: paling banyak di dada ayam, ada juga di daging dan ikan.

Methionine: Di putih telur juga ikan seperti tuna dan daging merah serta beragam sea-food seperti kepiting juga udang.

Phenylalanine: ada di daging sapi, babi, kambing, ayam, veal juga salmon.

Threonine: ada di daging dan telur walau di bayam juga ada sih, hihihi!

Valine: utamanya putih telur tapi daging dan juga sumber protein nabati ada.

Trytophan: banyak di daging ayam (kalkun) tapi yang tertinggi di daging singa laut!

Hahahaha.. Daging merah juga ada, putih telur juga bayam dan seaweed.

Dalam keju seperti parmesan, cheddar, mozzarella, romano, swiss, edam, gouda juga banyak trytophan, selain daging merah ada daging kelinci, ayam bagian dada dan paha, juga di ikan hallibut, salmon, makarel, dan Kakap!

Kekurangan asam amino esensial akan sangat merugikan kesehatan, utamanya terasa di otak: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469761/

Lalu rambut rontok dan sistem reproduksi terganggu, tubuh lebih mentingin survival dulu daripada bikin anak, jadinya tidak subur dan siklus bulanan bisa berhenti, kalau tidak mati!

Karena kalau benar-benar kekurangan asam amino esensial memang bisa membawa kepada kematian.

Awalnya, kesehatan reproduksi bermasalah: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028136

Gejala paling ringannya: susah tidur, berasa lelah dan banyak kecemasan, terlalu sering berpikir berulang, hingga depresi, berat badan berkurang di otot, terasa gampang capek tapi sulit terlelap, dan kulit serta kuku plus rambut jadi tampak tidak sehat!

Makanya:

1. Jangan kurang makan protein (yang berkualitas hanya dari sumber hewani dan paling komplit),

2. Harus perhatikan masalah sistem cerna jadi terganggu penyerapan protein oleh gangguan enzim atau bakteria,

3. Ketidakseimbangan hormonal khususnya resistensi insulin yang membuat penyaluran asam amino ke otot dan organ terganggu.

4. Kombinasi dari stres dan toksin yang menguras habis asam amino tertentu.

Jadi, jika sering berasa kurang tenaga, atau pikiran gampang bete hingga depresi, sulit berkonsentrasi malah gampang lupa, kelenjar tiroid berfungsi rendah, bergejala alergi dan sistem cerna bermasalah, organ-organ detoks tidak maksimal (ginjal dan kulit), lemak bertambah malah otot atropi atau mengecil dan berkurang, serta kuku retak-retak plus rambut rontok.

Itu tandanya udah sangat kurang makan daging, khususnya daging merah.

Kesimpulannya: Untuk sehat memang baiknya tidak makan setiap saat tapi tidak berarti berdiet ketat karena kita harus memenuhi kebutuhan gizi khususnya nutrisi esensial seperti dua lemak (omega 3 & 6) serta SEMBILAN asam amino yang harus didapatkan dari makanan, yang paling komplit dan kualitas tinggi: daging merah!

Sekian teleminar kali ini, terima kasih yang sudah menyimak!

Simpel: UUD alias ujung-ujungnya daging tapi ilmunya sebenarnya sangat kompleks tapi orang sering meremehkan, supaya sadar betapa dalamnya informasi ini, silahkan telusuri satu-satu jurnal ilmiah referensinya:

1. Geiger E. Experiments with delayed supplementation of incomplete amino acid mixtures. J Nutr. 1947;34(1):97–111. [PubMed]

2. Peters JC, Harper AE. Influence of dietary protein level on protein self-selection and plasma and brain amino acid concentrations. Physiol Behav. 1984;33(5):783–790. [PubMed]

3. Sorensen A, Mayntz D, Raubenheimer D, Simpson SJ. Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity (Silver Spring) 2008;16(3):566–571. doi:10.1038/oby.2007.58. [PubMed]

4. Tome D. Protein, amino acids and the control of food intake. Br J Nutr. 2004;92(Suppl 1):S27–S30. [PubMed]

5. Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558. [PubMed]

6. White BD, He B, Dean RG, Martin RJ. Low protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats. J Nutr. 1994;124(8):1152–1160. [PubMed]

7. Riggs AJ, White BD, Gropper SS. Changes in energy expenditure associated with ingestion of high protein, high fat versus high protein, low fat meals among underweight, normal weight, and overweight females. Nutr J. 2007;6:40. doi:10.1186/1475-2891-6-40. [PMC free article] [PubMed]

8. Du F, Higginbotham DA, White BD. Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J Nutr. 2000;130(3):514–521. [PubMed]

9. Galef BG. Is there a specific appetite for protein? In: Berthoud HR, Seeley RJ, editors. Neural and metabolic control of macronutrient intake. CRC Press; Boca Raton: 2000. pp. 19–28.

10. Morrison CD, Reed SD, Henagan TM. Homeostatic regulation of protein intake: in search of a mechanism. Am J Physiol Regul Integr Comp Physiol. 2012;302(8):R917–R928. doi:10.1152/ajpregu.00609.2011. [PMC free article] [PubMed]

11. DiBattista D, Mercier S. Role of learning in the selection of dietary protein in the golden hamster (Mesocricetus auratus) Behav Neurosci. 1999;113(3):574–586. [PubMed]

12. Gibson EL, Wainwright CJ, Booth DA. Disguised protein in lunch after low-protein breakfast conditions food-flavor preferences dependent on recent lack of protein intake. Physiol Behav. 1995;58(2):363–371. [PubMed]

13. Gibson EL, Booth DA. Acquired protein appetite in rats: dependence on a protein-specific need state. Experientia. 1986;42(9):1003–1004. [PubMed]

14. Hansen BS, Vaughan MH, Wang L. Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J Biol Chem. 1972;247(12):3854–3857. [PubMed]

15. Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, Cavener DR, McGrath BC, Rudell JB, Koehnle TJ, Gietzen DW. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science. 2005;307(5716):1776–1778. doi:10.1126/science.1104882. [PubMed]

16. Leung PM, Rogers QR, Harper AE. Effect of amino acid imbalance in rats fed ad libitum, interval-fed or force-fed. J Nutr. 1968;95(3):474–482. [PubMed]

17. Hrupka BJ, Lin YM, Gietzen DW, Rogers QR. Small changes in essential amino acid concentrations alter diet selection in amino acid-deficient rats. J Nutr. 1997;127(5):777–784. [PubMed]

18. Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell. 2002;1(1):22–32. [PMC free article] [PubMed]

19. Wek RC, Jiang HY, Anthony TG. Coping with stress: EIF2 kinases and translational control. Biochem Soc Trans. 2006;34(Pt 1):7–11. doi:10.1042/BST20060007. [PubMed]

20. Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. 2009;20(9):436–443. doi:10.1016/j.tem.2009.05.008. [PMC free article] [PubMed]

21. Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr. 2012;3(3):295–306. doi:10.3945/an.112.001891. [PMC free article] [PubMed]

22. Koehnle TJ, Russell MC, Morin AS, Erecius LF, Gietzen DW. Diets deficient in indispensable amino acids rapidly decrease the concentration of the limiting amino acid in the anterior piriform cortex of rats. J Nutr. 2004;134(9):2365–2371. [PubMed]

23. Leung PM, Rogers QR. Importance of prepyriform cortex in food-intake response of rats to amino acids. Am J Physiol. 1971;221(3):929–935. [PubMed]

24. Rogers QR, Leung PM. The influence of amino acids on the neuroregulation of food intake. Fed Proc. 1973;32(6):1709–1719. [PubMed]

25. Gietzen DW. Neural mechanisms in the responses to amino acid deficiency. J Nutr. 1993;123(4):610–625. [PubMed]

26. Noda K, Chikamori K. Effect of ammonia via prepyriform cortex on regulation of food intake in the rat. Am J Physiol. 1976;231(4):1263–1266. [PubMed]

27. Firman JD, Kuenzel WJ. Neuroanatomical regions of the chick brain involved in monitoring amino acid deficient diets. Brain Res Bull. 1988;21(4):637–642. [PubMed]

28. Beverly JL, Gietzen DW, Rogers QR. Effect of dietary limiting amino acid in prepyriform cortex on meal patterns. Am J Physiol. 1990;259(4 Pt 2):R716–R723. [PubMed]

29. Beverly JL, Gietzen DW, Rogers QR. Effect of dietary limiting amino acid in prepyriform cortex on food intake. Am J Physiol. 1990;259(4 Pt 2):R709–R715. [PubMed]

30. Monda M, Sullo A, De Luca V, Pellicano MP, Viggiano A. L-threonine injection into PPC modifies food intake, lateral hypothalamic activity, and sympathetic discharge. Am J Physiol. 1997;273(2 Pt 2):R554–R559. [PubMed]

31. Hasan Z, Woolley DE, Gietzen DW. Responses to indispensable amino acid deficiency and replenishment recorded in the anerior piriform cortex of the behaving rat. Nutr Neurosci. 1998;1:373–381.

32. Rudell JB, Rechs AJ, Kelman TJ, Ross-Inta CM, Hao S, Gietzen DW. The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J Neurosci. 2011;31(5):1583–1590. doi:10.1523/JNEUROSCI.4934-10.2011. [PMC free article] [PubMed]

33. Gietzen DW. Amino acid recognition in the central nervous system. In: Berthoud HR, Seeley RJ, editors. Neural and metabolic control of macronutrient intake. CRC Press; Boca Raton: 2000. pp. 339–357.

34. Gietzen DW, Hao S, Anthony TG. Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr. 2007;27:63–78. doi:10.1146/annurev.nutr.27.061406.093726. [PubMed]

35. Gietzen DW, Rogers QR. Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle. Trends Neurosci. 2006;29(2):91–99. doi:10.1016/j.tins.2005.12.007. [PubMed]

36. Rowe TB, Macrini TE, Luo ZX. Fossil evidence on origin of the mammalian brain. Science. 2011;332(6032):955–957. doi:10.1126/science.1203117. [PubMed]

37. Shepherd G. The synaptic organization of the brain. 2nd edn Oxford University Press; New York: 1979. Olfactory cortex; pp. 289–307.

38. Kanter ED, Haberly LB. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Brain Res. 1990;525(1):175–179. [PubMed]

39. Suzuki N, Bekkers JM. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol. 2010;518(10):1670–1687. doi:10.1002/cne.22295. [PubMed]

40. Cummings SL, Truong BG, Gietzen DW. Neuropeptide Y and somatostatin in the anterior piriform cortex alter intake of amino acid-deficient diets. Peptides. 1998;19(3):527–535. [PubMed]

41. Jung MW, Larson J, Lynch G. Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex. Exp Brain Res. 1990;82(2):451–455. [PubMed]

42. Sharp JW, Ross-Inta CM, Hao S, Rudell JB, Gietzen DW. Co-localization of phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2) and phosphorylated eukaryotic initiation factor 2alpha (eIF2alpha) in response to a threonine-devoid diet. J Comp Neurol. 2006;494(3):485–494. doi:10.1002/cne.20817. [PubMed]

43. Gale K, Zhong P, Miller LP, Murray TF. Amino acid neurotransmitter interactions in ‘area tempestas’: an epileptogenic trigger zone in the deep prepiriform cortex. Epilepsy Res Suppl. 1992;8:229–234. [PubMed]

44. Ekstrand JJ, Domroese ME, Johnson DM, Feig SL, Knodel SM, Behan M, Haberly LB. A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J Comp Neurol. 2001;434(3):289–307. [PubMed]

45. Koehnle TJ, Russell MC, Gietzen DW. Rats rapidly reject diets deficient in essential amino acids. J Nutr. 2003;133(7):2331–2335. [PubMed]

46. Gietzen DW, Ross CM, Hao S, Sharp JW. Phosphorylation of eIF2alpha is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats. J Nutr. 2004;134(4):717–723. [PubMed]

47. Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, Cherasse Y, Zeng H, Zhang Y, Harding HP, Ron D, Fafournoux P. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab. 2005;1(4):273–277. doi:10.1016/j.cmet.2005.03.004. [PubMed]

48. Mitsuda T, Hayakawa Y, Itoh M, Ohta K, Nakagawa T. ATF4 regulates gamma-secretase activity during amino acid imbalance. Biochem Biophys Res Commun. 2007;352(3):722–727. doi:10.1016/j.bbrc.2006.11.075. [PubMed]

49. Truong BG, Magrum LJ, Gietzen DW. GABA(A) and GABA(B) receptors in the anterior piriform cortex modulate feeding in rats. Brain Res. 2002;924(1):1–9. [PubMed]

50. Leung PM, Larson DM, Rogers QR. Food intake and preference of olfactory bulbectomized rats fed amino acid imbalanced or deficient diets. Physiol Behav. 1972;9(4):553–557. [PubMed]

51. Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R. Driving opposing behaviors with ensembles of piriform neurons. Cell. 2011;146(6):1004–1015. doi:10.1016/j.cell.2011.07.041. [PMC free article] [PubMed]

52. Rogers QR, Leung PMB. The control of food intake: when and how are amino acids involved? In: Kare MR, Maller O, editors. The chemical senses and nutrition. Academic Press. Inc.; New York: 1977. pp. 213–249.

53. Feurte S, Tome D, Gietzen DW, Even PC, Nicolaidis S, Fromentin G. Feeding patterns and meal microstructure during development of a taste aversion to a threonine devoid diet. Nutr Neurosci. 2002;5(4):269–278. [PubMed]

54. Koehnle TJ, Gietzen DW. Modulation of feeding behavior by amino acid-deficient diets: present findings and future directions. In: Lieberman HR, Kanarek RB, Prasad C, editors. Nutritional neuroscience. Taylor and Francis Group/CRC Press; Boca Raton: 2005. pp. 147–161.

55. Gietzen DW, Leung PM, Rogers QR. Dietary amino acid imbalance and neurochemical changes in three hypothalamic areas. Physiol Behav. 1989;46(3):503–511. [PubMed]

56. Price JL, Slotnick BM, Revial MF. Olfactory projections to the hypothalamus. J Comp Neurol. 1991;306(3):447–461. doi:10.1002/cne.903060309. [PubMed]

57. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab. 2009;296(4):E592–E602. doi:10.1152/ajpendo.90645.2008. [PMC free article] [PubMed]

58. Hao S, Ross-Inta CM, Gietzen DW. The sensing of essential amino acid deficiency in the anterior piriform cortex, that requires the uncharged tRNA/GCN2 pathway, is sensitive to wortmannin but not rapamycin. Pharmacol Biochem Behav. 2010;94(3):333–340. doi:10.1016/j.pbb.2009.09.014. [PMC free article] [PubMed]

59. Lynch CJ. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr. 2001;131(3):861S–865S. [PubMed]

60. Goto S, Nagao K, Bannai M, Takahashi M, Nakahara K, Kangawa K, Murakami N. Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment. Neuroscience. 2010;166(1):333–340. doi:10.1016/j.neuroscience.2009.12.013. [PubMed]

61. Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78(4):969–1054. [PubMed]

62. Blais A, Huneau JF, Magrum LJ, Koehnle TJ, Sharp JW, Tome D, Gietzen DW. Threonine deprivation rapidly activates the system A amino acid transporter in primary cultures of rat neurons from the essential amino acid sensor in the anterior piriform cortex. J Nutr. 2003;133(7):2156–2164. [PubMed]

63. Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447(5):784–795. doi:10.1007/s00424-003-1117-9. [PubMed]

64. Gietzen DW, Magrum LJ. Molecular mechanisms in the brain involved in the anorexia of branched-chain amino acid deficiency. J Nutr. 2001;131(3):851S–855S. [PubMed]

65. Sharp JW, Magrum LJ, Gietzen DW. Role of MAP kinase in signaling indispensable amino acid deficiency in the brain. Brain Res Mol Brain Res. 2002;105(1–2):11–18. [PubMed]

66. Sharp JW, Ross CM, Koehnle TJ, Gietzen DW. Phosphorylation of Ca2+/calmodulin-dependent protein kinase type II and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in response to a threonine-devoid diet. Neuroscience. 2004;126(4):1053–1062. doi:10.1016/j.neuroscience.2004.03.066. [PubMed]

67. Koehnle TJ, Stephens AL, Gietzen DW. Threonine-imbalanced diet alters first-meal microstructure in rats. Physiol Behav. 2004;81(1):15–21. doi:10.1016/j.physbeh.2003.11.009. [PubMed]

68. Haberly LB, Price JL. Association and commissural fiber systems of the olfactory cortex of the rat. J Comp Neurol. 1978;178(4):711–740. doi:10.1002/cne.901780408. [PubMed]

69. Aja SM. Dissertation. University of California; Davis: 1999. Neurotransmitters and neural circuitry supporting aminoprivic feeding.

70. Price JL, Carmichael T, Haberly LB. Olfactory input to the prefrontal cortex. In: Davis JL, Eichenbaum H, editors. Olfaction a model system for computational neuroscience. MIT Press; London: 1991. pp. 101–120.

71. Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 1986;396(1):77–96. [PubMed]

72. Sul JH, Jo S, Lee D, Jung MW. Role of rodent secondary motor cortex in value-based action selection. Nat Neurosci. 2011;14(9):1202–1208. doi:10.1038/nn.2881. [PMC free article] [PubMed]

73. Rolls ET. The neural control of feeding in primates. In: Booth DA, editor. Neurophysiology of ingestion. Pergamon Press; Oxford: 1993. pp. 137–169.

74. Rolls ET. Chemosensory learning in the cortex. Front Syst Neurosci. 2011;5:78. doi:10.3389/fnsys.2011.00078. [PMC free article] [PubMed]

75. Krettek JE, Price JL. Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol. 1977;172(4):687–722. doi:10.1002/cne.901720408. [PubMed]

76. Karnani MM, Apergis-Schoute J, Adamantidis A, Jensen LT, de Lecea L, Fugger L, Burdakov D. Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron. 2011;72(4):616–629. doi:10.1016/j.neuron.2011.08.027. [PubMed]

77. Blevins JE, Dixon KD, Hernandez EJ, Barrett JA, Gietzen DW. Effects of threonine injections in the lateral hypothalamus on intake of amino acid imbalanced diets in rats. Brain Res. 2000;879(1–2):65–72. [PubMed]

78. Russell MC, Koehnle TJ, Barrett JA, Blevins JE, Gietzen DW. The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr Neurosci. 2003;6(4):247–251. [PubMed]

79. Tabuchi E, Ono T, Nishijo H, Torii K. Amino acid and NaCl appetite, and LHA neuron responses of lysine-deficient rat. Physiol Behav. 1991;49(5):951–964. [PubMed]

80. Sinnamon HM. Preoptic and hypothalamic neurons and the initiation of locomotion in the anesthetized rat. Prog Neurobiol. 1993;41(3):323–344. [PubMed]

81. Jordan LM. Initiation of locomotion in mammals. Ann N Y Acad Sci. 1998;860:83–93. [PubMed]

82. Wang Y, Cummings SL, Gietzen DW. Temporal-spatial pattern of c-Fos expression in the rat brain in response to indispensable amino acid deficiency. II. The learned taste aversion. Brain Res Mol Brain Res. 1996;40(1):35–41. [PubMed]

83. Wang Y, Cummings SL, Gietzen DW. Temporal-spatial pattern of c-Fos expression in the rat brain in response to indispensable amino acid deficiency. I. The initial recognition phase. Brain Res Mol Brain Res. 1996;40(1):27–34. [PubMed]

84. Bellinger LL, Evans JF, Gietzen DW. Dorsomedial hypothalamic lesions alter intake of an imbalanced amino acid diet in rats. J Nutr. 1998;128(7):1213–1217. [PubMed]

85. Bellinger LL, Evans JF, Tillberg CM, Gietzen DW. Effects of dorsomedial hypothalamic nuclei lesions on intake of an imbalanced amino acid diet. Am J Physiol. 1999;277(1 Pt 2):R250–R262. [PubMed]

86. Hernandez L, Hoebel BG. Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav. 1988;44(4–5):599–606. [PubMed]

87. Mark GP, Blander DS, Hoebel BG. A conditioned stimulus decreases extracellular dopamine in the nucleus accumbens after the development of a learned taste aversion. Brain Res. 1991;551(1–2):308–310. [PubMed]

88. Yamamoto T, Ueji K. Brain mechanisms of flavor learning. Front Syst Neurosci. 2011;5:76. doi:10.3389/fnsys.2011.00076. [PMC free article] [PubMed]

89. Aja SM, Chan P, Barrett JA, Gietzen DW. DA1 receptor activity opposes anorectic responses to amino acid-imbalanced diets. Pharmacol Biochem Behav. 1999;62(3):493–498. [PubMed]

90. Wang CX, Erecius LF, Beverly JL, 3rd, Gietzen DW. Essential amino acids affect interstitial dopamine metabolites in the anterior piriform cortex of rats. J Nutr. 1999;129(9):1742–1745. [PubMed]

91. Hoebel BG. Brain reward and aversion systems in the control of feeding and sexual behavior. Nebr Symp Motiv. 1975;22:49–112. [PubMed]

92. Derjean D, Moussaddy A, Atallah E, St-Pierre M, Auclair F, Chang S, Ren X, Zielinski B, Dubuc R. A novel neural substrate for the transformation of olfactory inputs into motor output. PLoS Biol. 2010;8(12):e1000567. doi:10.1371/journal.pbio.1000567. [PMC free article] [PubMed]

93. Scott TR. Learning through the taste system. Front Syst Neurosci. 2011;5:87. doi:10.3389/fnsys.2011.00087. [PMC free article] [PubMed]

94. Stellar E. The physiology of motivation. Psychol Rev. 1954;61(1):5–22. [PubMed]

95. Blevins JE, Truong BG, Gietzen DW. NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res. 2004;1019(1–2):124–133. doi:10.1016/j.brainres.2004.05.089. [PubMed]

96. Barone FC, Cheng JT, Wayner MJ. GABA inhibition of lateral hypothalamic neurons: role of reticular thalamic afferents. Brain Res Bull. 1994;33(6):699–708. [PubMed]

97. Rozin P. Specific aversions as a component of specific hungers. J Comp Physiol Psychol. 1967;64(2):237–242. [PubMed]

98. Sodersten P, Nergardh R, Bergh C, Zandian M, Scheurink A. Behavioral neuroendocrinology and treatment of anorexia nervosa. Front Neuroendocrinol. 2008;29(4):445–462. doi:10.1016/j.yfrne.2008.06.001. [PubMed]

99. Magrum LJ, Teh PS, Kreiter MR, Hickman MA, Gietzen DW. Transfer ribonucleic acid charging in rat brain after consumption of amino acid-imbalanced diets. Nutr Neurosci. 2002;5(2):125–130. [PubMed]

100. Kadowaki M, Kanazawa T. Amino acids as regulators of proteolysis. J Nutr. 2003;133(6 Suppl 1):2052S–2056S. [PubMed]

101. Simson PC, Booth DA. Olfactory conditioning by association with histidine-free or balanced amino acid loads in rats. Q J Exp Psychol. 1973;25(3):354–359. doi:10.1080/14640747308400356. [PubMed]

102. Fromentin G, Feurte S, Nicolaidis S. Spatial cues are relevant for learned preference/aversion shifts due to amino-acid deficiencies. Appetite. 1998;30(2):223–234. doi:10.1006/appe.1997.0132. [PubMed]

103. Booth DA, Simson PC. Food preferences acquired by association with variations in amino acid nutrition. Q J Exp Psychol. 1971;23(1):135–145. doi:10.1080/00335557143000149. [PubMed]

104. Fromentin G, Gietzen DW, Nicolaidis S. Aversion-preference patterns in amino acid- or protein-deficient rats: a comparison with previously reported responses to thiamin-deficient diets. Br J Nutr. 1997;77(2):299–314. [PubMed]

105. Gietzen DW, McArthur LH, Theisen JC, Rogers QR. Learned preference for the limiting amino acid in rats fed a threonine-deficient diet. Physiol Behav. 1992;51(5):909–914. [PubMed]

106. Garcia J, Kimeldorf DJ, Koelling RA. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science. 1955;122(3160):157–158. [PubMed]

107. Simson PC, Booth DA. Effect of CS-US interval on the conditioning of odour preferences by amino acid loads. Physiol Behav. 1973;11(6):801–808. [PubMed]

108. Rogers QR, Wigle AR, Laufer A, Castellanos VH, Morris JG. Cats select for adequate methionine but not threonine. J Nutr. 2004;134(8 Suppl):2046S–2049S. [PubMed]

109. Meliza LL, Leung PM, Rogers QR. Effect of anterior prepyriform and medial amygdaloid lesions on acquisition of taste-avoidance and response to dietary amino acid imbalance. Physiol Behav. 1981;26(6):1031–1035. [PubMed]

110. Gietzen DW, Erecius LF, Rogers QR. Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J Nutr. 1998;128(4):771–781. [PubMed]

111. Dardou D, Datiche F, Cattarelli M. Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem. 2006;13(2):150–160. doi:10.1101/lm.148706. [PMC free article] [PubMed]

112. Inui-Yamamoto C, Yoshioka Y, Inui T, Sasaki KS, Ooi Y, Ueda K, Seiyama A, Ohzawa I. The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats. Neuroscience. 2010;167(2):199–204. doi:10.1016/j.neuroscience.2010.02.027. [PubMed]

113. Riley AL, Tuck DL. Conditioned food aversions: a bibliography. Ann N Y Acad Sci. 1985;443:381–437. [PubMed]

114. Aja S, Sisouvong S, Barrett JA, Gietzen DW. Basolateral and central amygdaloid lesions leave aversion to dietary amino acid imbalance intact. Physiol Behav. 2000;71(5):533–541. [PubMed]

115. Fromentin G, Feurte S, Nicolaidis S, Norgren R. Parabrachial lesions disrupt responses of rats to amino acid devoid diets, to protein-free diets, but not to high-protein diets. Physiol Behav. 2000;70(3–4):381–389. [PubMed]

116. Overmann SR, Woolley DE, Bornschein RL. Hippocampal potentials evoked by stimulation of olfactory basal forebrain and lateral septum in the rat. Brain Res Bull. 1980;5(4):437–449. [PubMed]

117. Leung PM, Rogers QR. Effects of hippocampal lesions on adaptive intake of diets with disproportionate amounts of amino acids. Physiol Behav. 1979;23(1):129–136. [PubMed]

118. Beverly JL, 3rd, Gietzen DW, Rogers QR. Protein synthesis in the prepyriform cortex: effects on intake of an amino acid-imbalanced diet by sprague-dawley rats. J Nutr. 1991;121(5):754–761. [PubMed]

119. Torii K, Kondoh T, Mori M, Ono T. Hypothalamic control of amino acid appetite. Ann N Y Acad Sci. 1998;855:417–425. [PubMed]

120. Markison S, Gietzen DW, Spector AC. Essential amino acid deficiency enhances long-term intake but not short-term licking of the required nutrient. J Nutr. 1999;129(8):1604–1612. [PubMed]

121. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature. 2002;416(6877):199–202. doi:10.1038/nature726. [PubMed]

122. Yasumatsu K, Ogiwara Y, Takai S, Yoshida R, Iwatsuki K, Torii K, Margolskee RF, Ninomiya Y. Umami taste in mice uses multiple receptors and transduction pathways. J Physiol. 2011;590(Pt 5):1155–1170. doi:10.1113/jphysiol.2011.211920. [PMC free article] [PubMed]

123. Contreras RJ, Beckstead RM, Norgren R. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst. 1982;6(3):303–322. [PubMed]

124. Norgren R, Leonard CM. Ascending central gustatory pathways. J Comp Neurol. 1973;150(2):217–237. doi:10.1002/cne.901500208. [PubMed]

125. Iwatsuki K, Uneyama H. Sense of taste in the gastrointestinal tract. J Pharmacol Sci. 2012;118(2):123–128. [PubMed]

126. Negri R, Morini G, Greco L. From the tongue to the gut. J Pediatr Gastroenterol Nutr. 2011;53(6):601–605. doi:10.1097/MPG.0b013e3182309641. [PubMed]

127. Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch. 2007;454(5):759–776. doi:10.1007/s00424-007-0247-x. [PMC free article] [PubMed]

128. Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190(3):285–296. doi:10.1083/jcb.201003144. [PMC free article] [PubMed]

129. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–930. doi:10.1126/science.1124147. [PubMed]

130. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400. doi:10.1146/annurev-pharmtox-010611-134537. [PubMed]

131. Hundal HS, Taylor PM. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab. 2009;296(4):E603–E613. doi:10.1152/ajpendo.91002.2008. [PMC free article] [PubMed]

132. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J. 2003;373(Pt 1):1–18. [PMC free article] [PubMed]

133. Ljungdahl PO. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans. 2009;37(Pt 1):242–247. doi:10.1042/BST0370242. [PubMed]

134. Palii SS, Thiaville MM, Pan YX, Zhong C, Kilberg MS. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) system A transporter gene. Biochem J. 2006;395(3):517–527. doi:10.1042/BJ20051867. [PMC free article] [PubMed]

135. Conigrave AD, Hampson DR. Broad-spectrum amino acid-sensing class C G-protein coupled receptors: molecular mechanisms, physiological significance and options for drug development. Pharmacol Ther. 2010;127(3):252–260. doi:10.1016/j.pharmthera.2010.04.007. [PubMed]

136. Liou AP, Sei Y, Zhao X, Feng J, Lu X, Thomas C, Pechhold S, Raybould HE, Wank SA. The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol. 2011;300(4):G538–G546. doi:10.1152/ajpgi.00342.2010. [PMC free article] [PubMed]

137. Conigrave AD, Mun HC, Lok HC. Aromatic L-amino acids activate the calcium-sensing receptor. J Nutr. 2007;137(6 Suppl 1):1524S–1527S. discussion 1548S. [PubMed]

138. Albers A, Broer A, Wagner CA, Setiawan I, Lang PA, Kranz EU, Lang F, Broer S. Na+ transport by the neural glutamine transporter ATA1. Pflugers Arch. 2001;443(1):92–101. doi:10.1007/s004240100663. [PubMed]

139. Armano S, Coco S, Bacci A, Pravettoni E, Schenk U, Verderio C, Varoqui H, Erickson JD, Matteoli M. Localization and functional relevance of system A neutral amino acid transporters in cultured hippocampal neurons. J Biol Chem. 2002;277(12):10467–10473. doi:10.1074/jbc.M110942200. [PubMed]

140. Gietzen DW, Jhanwar-Uniyal M. Alpha 2 noradrenoceptors in the anterior piriform cortex decline with acute amino acid deficiency. Brain Res Mol Brain Res. 1996;35(1–2):41–46. [PubMed]

141. Sanahuja JC, Harper AE. Effect of amino acid imbalance on food intake and preference. Am J Physiol. 1962;202:165–170. [PubMed]

142. Naito-Hoopes M, McArthur LH, Gietzen DW, Rogers QR. Learned preference and aversion for complete and isoleucine-devoid diets in rats. Physiol Behav. 1993;53(3):485–494. [PubMed]

143. Elizalde G, Sclafani A. Flavor preferences conditioned by intragastric polycose infusions: a detailed analysis using an electronic esophagus preparation. Physiol Behav. 1990;47(1):63–77. [PubMed]

144. Hrupka BJ, Lin Y, Gietzen DW, Rogers QR. Lysine deficiency alters diet selection without depressing food intake in rats. J Nutr. 1999;129(2):424–430. [PubMed]

145. Murphy ME, Pearcy SD. Dietary amino acid complementation as a foraging strategy for wild birds. Physiol Behav. 1993;53(4):689–698. [PubMed]

146. Roth FX, Meindl C, Ettle T. Evidence of a dietary selection for methionine by the piglet. J Anim Sci. 2006;84(2):379–386. [PubMed]

147. Fortes-Silva R, Rosa PV, Zamora S, Sanchez-Vazquez FJ. Dietary self-selection of protein-unbalanced diets supplemented with three essential amino acids in Nile tilapia. Physiol Behav. 2012;105(3):639–644. doi:10.1016/j.physbeh.2011.09.023. [PubMed]

148. Wilson DA, Kadohisa M, Fletcher ML. Cortical contributions to olfaction: plasticity and perception. Semin Cell Dev Biol. 2006;17(4):462–470. doi:10.1016/j.semcdb.2006.04.008. [PubMed]

149. Gloaguen M, Le Floc’h N, Corrent E, Primot Y, van Milgen J. Providing a diet deficient in valine but with excess leucine results in a rapid decrease in feed intake and modifies the postprandial plasma amino acid and alpha-keto acid concentrations in pigs. J Anim Sci. 2012 doi:10.2527/jas.2011-4956. [PubMed]

150. Bellinger LL, Williams FE, Rogers QR, Gietzen DW. Liver denervation attenuates the hypophagia produced by an imbalanced amino acid diet. Physiol Behav. 1996;59(4–5):925–929. [PubMed]

151. Harper AE. Effect of variations in protein intake on enzymes of amino acid metabolism. Can J Biochem. 1965;43(9):1589–1603. [PubMed]

152. Sikalidis AK, Stipanuk MH. Growing rats respond to a sulfur amino acid-deficient diet by phosphorylation of the alpha subunit of eukaryotic initiation factor 2 heterotrimeric complex and induction of adaptive components of the integrated stress response. J Nutr. 2010;140(6):1080–1085. doi:10.3945/jn.109.120428. [PMC free article] [PubMed]

153. Hasek BE, Stewart LK, Henagan TM, Boudreau A, Lenard NR, Black C, Shin J, Huypens P, Malloy VL, Plaisance EP, Krajcik RA, Orentreich N, Gettys TW. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R728–R739. doi:10.1152/ajpregu.00837.2009. [PMC free article] [PubMed]

154. Nagao K, Bannai M, Seki S, Kawai N, Mori M, Takahashi M. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats. Am J Physiol Endocrinol Metab. 2010;298(6):E1170–E1178. doi:10.1152/ajpendo.00763.2009. [PubMed]

155. Baumeister A, Hawkins WF, Cromwell RL. Need states and activity level. Psychol Bull. 1964;61:438–453. [PubMed]

156. Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Smith AD, Drevon CA, Refsum H, Perrone CE. Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res. 2011;52(1):104–112. doi:10.1194/jlr.M010215.